Transactivation and reactivation capabilities of temperature-dependent p53 mutants in yeast and human cells.
نویسندگان
چکیده
The p53 protein is a sequence-specific transcription factor controlling the expression of multiple genes and protecting cells from oncogenic transformation. In many tumors, the p53 protein is completely or partially inactivated by mutations in the p53 gene. We analyzed the transactivating activity of nine human temperature-dependent (td) p53 mutants in yeast cells. Mutations in seven of them were localized in the β-sandwich-coding region of the p53 gene, eight p53 mutants were temperature-sensitive and the R283C mutant was cold-sensitive. Patterns of their transactivation abilities towards three different responsive elements, the extent of their temperature dependency as well as discriminativity, were considerably variable. Similarly, their capacity to become reactivated by amifostine varied from complete resistance to high sensitivity. Transactivation abilities and temperature dependency of six p53 td mutants were determined in transiently-transfected H1299 human cells and revealed substantial concordance between the activity patterns of the p53 mutants in yeast and human cells. We concluded that the td p53 mutants do not comprise a uniform group, therefore, the behavior of each mutant has to be tested individually.
منابع مشابه
Low-level p53 expression changes transactivation rules and reveals superactivating sequences.
Transcriptional activation by the tumor suppressor p53 is considered to depend on cellular level, although there are few systems where this dependence on cellular level of p53 has been directly addressed. Previously, we reported that transactivation from p53 targets was sensitive to both p53 amount and DNA sequence, with some sequences being responsive to much lower p53 levels than others when ...
متن کاملMammalian p53 can function as a transcription factor in yeast.
p53 has previously been shown to contain a transactivation domain using GAL4 fusion proteins and to bind specifically to a 33 base pair DNA sequence in immunoprecipitation assays. We show here that mammalian p53 expressed in S. cerevisiae is able to activate transcription of a reporter gene placed under the control of a CYC1 hybrid promoter containing the 33 base pair p53-binding sequence. The ...
متن کاملPredicting the transactivation activity of p53 missense mutants using a four-body potential score derived from Delaunay tessellations.
We describe a novel statistical scoring method based on a computational geometry approach to predict the functional impact (transactivation activity) of missense mutations in the DNA-binding domain (DBD) of the tumor suppressor TP53, which is the most frequently mutated gene in human cancer. Residual scores (RS) for each residue were calculated to reflect differences in the compositional prefer...
متن کاملالقای آپوپتوز وابسته به p53 در ردهی سلولی لوسمی لنفوبلاستیک حاد پیشساز لنفوسیت B (NALM-6) توسط مولکول کوچک RITA
Background and Objective: The use of low-molecular-weight, nonpeptidic molecules that degrade the interaction between the p53 protein and its negative regulator MDM2 (Murine- double minute colon 2) is a new therapeutic strategy for treatment of various types of cancer. One of these agents is RITA (reactivation of p53 and induction of tumor cell apoptosis) which binds to p53 protein and inhibits...
متن کاملEvolution of p53 Transactivation Specificity through the Lens of a Yeast-Based Functional Assay
Co-evolution of transcription factors (TFs) with their respective cis-regulatory network enhances functional diversity in the course of evolution. We present a new approach to investigate transactivation capacity of sequence-specific TFs in evolutionary studies. Saccharomyces cerevisiae was used as an in vivo test tube and p53 proteins derived from human and five commonly used animal models wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of oncology
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2012